My Zimbio
Top Stories

Saturday, June 25, 2011

Why did the Ancients Believe Precession of Equinoxes is so Important?

Is the Sun Part of a Binary Star System? 

Just what is the real cause behind the precession of the equinoxes and why did the ancients believe this cycle was so important? Walter Cruttenden asks this question in his latest book Lost Star of Myth and Time and comes to some provocative conclusions. 

Lost Star of Myth and Time (Paperback)

To the layman, the precession of the equinoxes is the observed motion of the night sky shifting backwards by a small amount every year. Of course, the night sky continuously shifts throughout the year as the Earth orbits around the Sun, but if one were to take a fixed point in time (like the Vernal Equinox, for instance) and take a snapshot of the sky on that day every year, one would notice the sky slowly shifting backwards with each progressing year. This is what is meant by the precession of the zodiac, or precessional movement. Astrologers would say we are in a different 'age' or zodiac sign depending on which constellations are visible in the sky on the Vernal Equinox of a particular year. This precessional movement of the sky amounts to about 50 arc seconds per year and takes about 24,000-26,000 years to complete a full cycle; the "great year" or "great world cycle" as it is often called. 

Sir Isaac Newton was the first to put forth the idea that this precession is due to a wobbly motion of the Earth's axis, and few scientists have challenged this assumption since Newton's time. Cruttenden dares to ask the most basic question about this in his book bringing together a number of clues to form a hypothesis for precession being the result of the Sun moving in a binary orbit about a companion star. Could Cruttenden's speculations really lead to data that could overturn the ideas of Newton - a man treated like a deity in the world of physics and astronomy? As we'll see below, there's actually a large body of evidence to support Cruttenden's ideas. 

In his book, Cruttenden also offers some speculation about what ancient civilizations believed about this precessional cycle. Although, this part is not as strongly grounded in science, he speculates that as the Solar System makes its way through the points along this cycle, the nature of human civilization changes. At one extreme we have a Golden Age filled with peace, plenty and full social harmony; and at the other extreme an Iron Age filled with ignorance, war and social cacophony. The state of civilization depends on where we are in the cycle. Cruttenden points out that this shifting of the ages is recorded in Greek legends and in the legends of many other cultures around the world. This cycle implies that many civilizations with high technology - or perhaps just a more refined understanding of nature - may have come and gone through the many such "great years." This also implies that our current civilization is by no means special (in contrast with the prevailing Darwinian view.) 

Cruttenden even offers some speculation on what particular star this companion might be, focusing on Sirius as a possible candidate. While his arguments may seem reasonable, there's much evidence in Picknett and Prince's book The Stargate Conspiracy to point to the case for Sirius being overstated. I might even suggest reading The Stargate Conspiracy first before tackling Cruttenden's book. Even if Cruttenden is off in his quest to locate the Sun's companion, the evidence he's gathered for the Binary model is compelling and worth the read. The interested reader may want to check what he has to say over at his Binary Research Institute, which mirrors much of what's in his book. I've summarized some of the main scientific points he makes in his book below.

1.) Angular Momentum

When it comes to the Solar System, we have a big problem with angular momentum. This problem is related to the theory of how the Solar System formed out of a nebular cloud, otherwise known as the Nebular Condensation Theory. The theory was originally proposed by the christian mystic Emanuel Swedenborg and further developed by Immanuel Kant and others. (How an idea proposed by a mystic becomes accepted scientific theory is an interesting question, but one we'll have to save for another time.) According to the theory, every nebula starts out with a certain amount of angular momentum. As the particles and gasses condense to form a central proto-star, the proto-star's rotation should accelerate to conserve the total angular momentum. Think of an ice skater as she brings her arms and legs close to the vertical axis of rotation, spinning ever faster.

But despite what the Nebular Theory predicts, the Sun actually has very little angular momentum to speak of, at least compared to the other planets. The Sun contains about 1000 times more mass than all the planets combined, yet it possesses a mere 0.3 percent of the total angular momentum of the Solar System. Most of the angular momentum exists in the outer-gas planets like Saturn and Jupiter. So the question is, if the Nebular Theory is accurate, then where is the Sun's missing angular momentum?

Angular Momentum Mass 1
© Binary Research Institute
Graph shows that the Sun's angular momentum proportional to its mass is much smaller than the ratio for all the other planets.
Cruttenden proposes that if we factor in a hypothetical 24,000 year binary orbit shared with another star, then the missing angular momentum shows up in the Sun exactly where we'd expect it (see graph below.)

Mass Angular Momentum 2
© Binary Research Institute
Graph shows how the lower-than-expected angular momentum ratio to mass problem for the Sun disappears if we assume that the Sun is part of a binary star system with a 24,000 year period.
2.) Sheer Edge

According to a study by Allen, Bernstein and Malhotra published in The Astrophysical Journal in March of 2001, our solar system appears to have a sheer edge to it, meaning that beyond a certain point (50 AU, just beyond the Kuiper belt) there appears to be no trackable bodies of any significant size. It's as if we go from an enclosed area of having planets, asteroids, comets and other bodies, and then outside of that area nothing. Interestingly, this sheer edge is a feature one might expect to find in a binary star system. There's also a chance it could be due to another outer planet-like object such as the recently discovered planet Sedna, or it may have to do with some gravitational effect not as yet understood. The possibility is intriguing though.

Sheer Edge
© Binary Research Institute
Here is the raw data showing that traceable objects of any size seem to end abruptly at about 50 AU.
This animation below shows how a sheer edge from a binary star system might form:


3.) Comet Paths

It appears that studies carried out on the distribution of long-period comet orbits show that these orbits are essentially non-random. In other words, the suggestion is that some large body disturbs the Oort cloud (a cloud of comet or asteroid-like bodies that surrounds the outer-edge of the Solar System) and kicks off comets into similar orbits. This fact has received a fair amount of press in the last couple years; some astronomers speculate that this hypothetical body (Jovian-size planet, brown-dwarf, or otherwise) may be discovered "within two years." Comets should generally come from the location of the galactic plane due to galactic tidal forces -- and the data shows this is generally true. However, even after gravitational tides are taken into account, a small bias remains in the orbital distribution of these long-period comets. This points to the existence of another source propelling long-period comets other than gravitational tides.

Comet Paths
© Binary Research Institute
Bias in the distribution of long-period comet orbits.

A solar companion with a hypothetical 24,000 year period may fit the bill here, although astronomers now believe that this object might be more of a Jovian-size gas planet with a much longer orbital period instead. It could be that both exist, or that some astronomers are biased in their assumption of a longer-period body due to the million-year-long time-spans between mega-extinction events in the geological record. (The less than "mega" extinction events are far more numerous.)

Since the earliest proposals of the 'Nemesis Theory' back in the 80's, which attempted to explain the mass extinction cycle, the proponents of this theory hypothesized that a brown-dwarf star orbits about the Sun with a considerable period (roughly 26 million years, to match the average mass extinction rate). In fact, one of the objections raised against the original 'Nemesis Theory' by its opponents was that the period of time indicated by mass extinctions is much too long a time to suspect an orbiting body. Any orbit over such a long period of time just wouldn't be stable.

But could a solar companion with a shorter (meaning on the order of thousands, not millions of years) period solve this problem and explain the non-random distribution of comet orbits too? Recent evidence compiled by Richard Firestone et al. described in their book The Cycle of Cosmic Catastrophessuggests that encounters with comets happen far more frequently than originally supposed. Firestone et al. point to a significant impact event around 13,000 BCE at the Younger Dryas boundary. Mike Bailie, a dendrochronologist at the Queen's University Belfast, has written several books that suggest impact events during historical times as well. Denis Cox, whose work has been featured here on SOTT, has also found a number of locations based on satellite images that suggest historically recent comet bombardment too. This is certainly an area that needs further study.

4.) Sidereal vs. Solar Time

An interesting argument in favor of a binary system has to do with the two different ways of measuring the day length. One measurement is called the Solar Day, which we know is 24 hours. The other measurement is called the Sidereal Day which comes out slightly less at 23.56 hours. Given an observation point, like a star in the night sky, the Sidereal Day is the time it takes to reach that same point again in the sky after one full spin. Looking at the diagram below, one can see that the missing time is due to the Earth's orbit around the Sun. If the Earth and Sun were traveling along parallel paths there wouldn't be any difference between the Sidereal and the Solar Day - it's the curved orbital motion of the Earth in orbit with the Sun that makes the difference. Most of us never worry about sidereal time since few people other than astronomers are interested in keeping track of time in the night sky.

The same duo of time measurements exists for the Moon as well. The Moon orbits the Earth every 27.3 days, but we see a new Moon every 29.5 days. Again, the difference has to do with the Moon's orbital curvature around the Earth as the Earth orbits around the Sun. Due to this extra motion by the Earth, we have to add an extra 2.2 days. If the Sun and Earth were moving along parallel paths, then we'd see a new Moon every 27.2 days; but since the Earth orbits the Sun, the cycle is longer. Conceptually, this is no different than the Solar Day versus Sidereal Day example given above. In both examples, the differences in cycle measurements have to do with normal Keplarian motion in space.

Solar Sidereal Difference
© Binary Research Institute
Depicts how precessional movement is accounted for in the Binary star model of the solar system.
However, when it comes to the difference between the Sidereal Year and the Solar (or Equinoctial, or Tropical) Year, we have a completely different explanation. There is about a twenty minute difference between the two, such that the Sidereal Year is always slightly ahead of the solar year - just like the sidereal day is slightly ahead of the solar day, by analogy. The accepted theory for this precessional movement is called the Lunisolar Theory (which has to do with the wobbling motion of the Earth's axis, explained in greater detail below.) When dealing with the Sidereal Day versus Solar Day, we see that these differences are due to the extra orbital movement of the Earth around the Sun. So the question is: should the Sidereal Year be treated in the same manner? If the difference between the Sidereal Day and the Solar Day is the Earth's orbit about the Sun, couldn't the difference between the Sidereal Year and the Solar Year (known as precession) be due to the Sun's orbit about another body? That's how the analogy goes in any case. In the Binary Model both the Sidereal Day and the Sidereal Year are caused by the same type of Keplarian orbital motion.

5.) Time

Time is a funny thing. There's probably no greater challenge for a writer than trying to conceptualize time. Yet the constancy of time or the fact that so few adjustments need to be made in our day, year, etc. gives us a good reason to suspect that the Sun is part of a binary star system.

First we need to understand what the mainstream theory has to say about precessional movement, or the precession of the equinoxes. The current theory, called the Lunisolar Theory, states that the Earth's rotational axis also rotates tracing out the shape of a cone (see image to the right), changing its orientation very slowly - kind of like a spinning top. They call it the 'Luni-solar' theory because it is said that this top-like motion is caused by gravitational tidal forces coming from the Sun and the Moon. The idea is that it takes the Earth roughly 24,000-26,000 years to move its axis a full circle along this cone-like path. So the Lunisolar Theory would ostensibly seem to explain the precessional movement, although there is a problem (actually, several).

© NASA, Mysid
The LuniSolar Theory of precession: is the Earth's axis really tracing out a cone-like path every 24,000 years?
First of all, if this axial top-like motion were occurring, then we'd expect to lose a small amount of time each day. We would start to notice a small shift in our calculations for eclipses, planetary transits and such, which have to be measured fairly accurately. The motion of the planets that we observe in the sky should also precess along with the rest of the stars and galaxies in the background, but according to Karl Heinz and Uwe Homann in their Venus transit studies, they don't.According to Crutenden, we don't take into account precessional movement when calculating the positions of the planets or anything within our solar system for that matter. So any planets or other objects within the Solar System do not appear to precess with respect to the Earth. The only objects that follow precessional movement are those outside the Solar System. If this is the case, then precession cannot be due to this top-like motion that the Lunisolar Theory dictates.

In the Binary model, precessional motion is explained by the fact that the whole Solar System is rotating about a common center of gravity with another star. In other words, an observer on Mars, Venus or any other planet in the Solar System would notice the same precessional rate, proportional to its orbit, just like we see on Earth. The ultimate test would be to set up a telescopic probe on some other planet like Mars to measure the yearly precessional rate and compare it to the values on Earth. If the Binary System model is correct, these values should be proportional (taking their orbital periods into account). Of course, that still doesn't prove precession is due to our Sun being in orbit with a companion star, but it certainly makes the case stronger. Ultimately one would have to find the companion star in question to prove anything.

Check out this short video from the Sirus Research Group for a more visual description of this phenomenon:

Above from:

The precession of the equinoxes refers to the precession of Earth's axis of rotation with respect to inertial space. Hipparchus discovered that the positions of the equinoxes move westward along the ecliptic compared to the fixed stars on the celestial sphere. The exact dates of his life are not known, but astronomical observations attributed to him date from 147 BC to 127 BC and were described in his publications. He is considered the greatest astronomical observer, and perhaps, the greatest overall astronomer of antiquity.

Currently, this annual motion is about 50.3 seconds of arc per year or 1 degree every 71.6 years. The process is slow, but cumulative.A complete precession cycle covers a period of approximately 25,765 years, the so called great Platonic year, during which time the equinox regresses over a full 360°. Precessional movement also is the determining factor in the length of an Astrological Age.

Changing Pole Stars

Precession of Earth's axis around the north ecliptical pole

Precession of Earth's axis around the south ecliptical pole

A consequence of the precession is a changing pole star. Currently Polaris is extremely well-suited to mark the position of the north celestial pole, as it is about a half degree away from it and it is a moderately bright star (visual magnitude is 2.1 (variable).

On the other hand Thuban in the constellation Draco, which was the pole star in 3000 BC is much less conspicious at magnitude 3.67 (one-fifth as bright as Polaris); today it is all but invisible in light-polluted urban skies.

The brilliant Vega in the constellation Lyra is often touted as the best Northstar, when it fulfilled that role around 12000 BC and will do so again around the year AD 14000.

In reality it never comes closer than 5° to the pole.

When Polaris will be the north star again around 27800 AD, due to its proper motion it will be farther away from the pole then than it is now, while in 23600 BC it came closer to the pole.

To find the south celestial pole in the sky at this moment, one is less lucky, as that area is a particularly bland portion of the sky, and the nominal south pole star is Sigma Octantis, which with magnitude 5.5 is barely visible even under a properly dark sky. However that will change in the 80th to 90th century, when the south celestial pole travels through the False cross.

It is also seen from the starmap that the south pole, nicely pointed to by the Southern cross for the last 2000 years or so, is moving towards that constellation. By consequence it is now no longer visible from subtropical northern latitudes as it was in the time of the ancient Greeks.

Still pictures like these, found in many astronomy books, are only first approximations as they do not take into account the variable speed of the precession, the variable obliquity of the ecliptic, the planetary precession (which makes not the ecliptic pole the centre, but a circle about 6° away from it) and the proper motions of the stars.

Polar Shift and Equinoxes Shift
Precessional movement as seen from 'outside' the celestial sphere.

The rotation axis of the Earth describes over a period of about 25800 years a small circle (blue) among the stars, centred around the ecliptic northpole (blue E) and with an angular radius of about 23.4°: the angle known as the obliquity of the ecliptic. The orange axis was the Earth's rotation axis 5000 years ago when it pointed to the star Thuban. The yellow axis, pointing to Polaris is the situation now. 

Note that when the celestial sphere is seen from outside constellations appear in mirror image. Also note that the daily rotation of the Earth around its axis is opposite to the precessional rotation. When the polar axis precesses from one direction to another, then the equatorial plane of the Earth (indicated with the circular grid around the equator) and the associated celestial equator will move too. Where the celestial equator intersects the ecliptic (red line) there are the equinoxes. As seen from the drawing, the orange grid, 5000 years ago one intersection of equator and ecliptic, the vernal equinox was close to the star Aldebaran of Taurus. By now (the yellow grid) it has shifted (red arrow) to somewhere in the constellation of Pisces. 

Note that this is an astronomical description of the precessional movement and the vernal equinox position in a given constellation may not imply the astrological meaning of an Age carrying the same name, as they (ages and constellations) only have an exact alignment in the "first point of Aries", meaning once in each ca. 25800 (Great Sidereal Year).

Same picture as above but now from (near) Earth perspective
It might not be directly clear to the non-astronomer what the shift of the equinoxes has to do with the precession of the rotation axis of the Earth. The figures to the right try to explain that.

The rotation axis of the Earth describes over a period of 25700 years a small circle (blue) among the stars, centred around the ecliptic northpole (blue E) and with an angular radius of about 23.4°: the angle known as the obliquity of the ecliptic.

The orange axis was the Earth's rotation axis 5000 years ago when it pointed to the star Thuban. The yellow axis, pointing to Polaris is the situation now. Note that when the celestial sphere is seen from outside (as in the first drawing, an impossibilty of course) constellations appear in mirror image. Also note that the daily rotation of the Earth around its axis is opposite to the precessional rotation.

Of course when the polar axis precesses from one direction to another, then the equatorial plane of the Earth (indicated with the circular grid around the equator) and the associated celestial equator will move too. Where the celestial equator intersects the ecliptic (red line) there are the equinoxes. As seen from the drawing, the orange grid, 5000 years ago one intersection of equator and ecliptic, the vernal equinox was close to the star Aldebaran of Taurus. By now (the yellow grid) it has shifted (red arrow) to somewhere in the constellation of Pisces.

This is why the equinoctial shift is a consequence of the precession of the rotation axis of the Earth and the other way around. The second drawing shows the perspective from a near Earth position as seen through a very wide angle lens (from which the apparent distortion).

The precession as a consequence of the torque exerted on Earth by differential gravitation.

Contributing sources:

The Anti-Christ Identity? Can we know it now? Click Here!

Alex Jones' Infowars Business Team:
Products: Suzanne Somers, Dr. Joel Wallach and many others.

Roy's GhP Anti-Aging:

Search & Win

No comments:

Post a Comment

Popular Posts


Curious about what the future holds? Click here to find out how you can receive a 10 minute psychic reading from Psychic Source. - The Best Free Online CalculatorŠ½
Heal your vision without glasses!
Grow food in a BioDome: Click Here!

Fine Art - Painting Lessons: Real Art!
What is Bio-Farming? Can anyone do it?
Related Posts Plugin for WordPress, Blogger...
My Zimbio
Top Stories
My Zimbio
Top Stories Get 100 FREE Visitors to Your Website!
eXTReMe Tracker
AyurCat for Cat Health Care